BIDENTATE GROUP VB LIGANDS

II*. MASS SPECTRAL STUDIES ON SOME ETHYLENIC DIPHOSPHINE, DIARSINE, AND PHOSPHINE-ARSINE LIGANDS

K. K. CHOW and C. A. McAULIFFE*

Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD (Great Britain)

(Received November 15th, 1972)

SUMMARY

The mass spectra of cis- and trans-1,2-bis(diphenylphosphino)ethylene, cisand trans-1,2-bis(diphenylarsino)ethylene, cis- and trans-1-diphenylphosphino-2diphenylarsinoethylene, and the saturated 1-diphenylphosphino-2-diphenylarsinoethane are reported, and their fragmentation patterns, and those of some resulting intermediates, illustrated and discussed. The cis and trans isomers of the unsaturated ligands have identical mass spectra, suggesting that in the parent ion, $[H_2C_2E_2Ph_4]^+$ (E=P, As), free rotation about the C-C bond is possible. During fragmentation, phenyl migration from one Group VB atom to another occurs, but in the mixed phosphine-arsine ligands the phenyl group is transferred from arsenic to phosphorus, but not vice-versa.

INTRODUCTION

Despite the immense current interest in their preparation and complexing properties, few mass spectrophotometric data have been reported on phosphorus and arsenic donor ligands. The fragmentations induced by electron impact on triphenyl-phosphine², triphenylarsine³, bis(diphenylphosphino)- and bis(diphenylarsino)-methane, 1,2-bis(diphenylphosphino)- and 1,2-bis(diphenylarsino)ethane⁴ have been studied. The mass spectral patterns of *trans*-1-diphenylphosphino-2-diphenylarsino-ethylene (*t*-vasp) and its saturated analogue have been briefly mentioned by King and Kapoor⁵. Feltham and Metzger⁶ have studied the fragmentation patterns of three methyl-substituted diarsines—*o*-phenylenebis(diethylarsine) and *cis*- and *trans*-1,2-bis(dimethylarsino)ethylene—and it was shown that all four CH₃ · groups are lost from the parent ions.

* For part 1 see ref. 1.

In this paper we report the mass spectra of *cis*- and *trans*-1,2-bis(diphenylphosphino)ethylene (vpp, I; *t*-vpp, II), *cis*- and *trans*-1,2-bis(diphenylarsino)ethylene (vaa, III; *t*-vaa, IV), *cis*- and *trans*-vasp (V and VI, respectively), and also of the saturated 1-diphenylphosphino-2-diphenylarsinoethane (pae, VII).

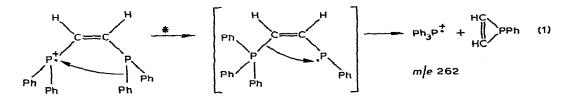
H_C=C_PPh ₂	$Ph_2P \sim C \sim PPh_2$	$H \sim C = C \sim H$ Ph ₂ As $\sim C \sim AsPh_2$
vpp (I)	t-vpp (II)	vaa (III)
H Ph ₂ As <i>t</i> -vaa (IV)	$H_{Ph_2P}C=C_{AsPh_2}^{H}$ vasp (V) $Ph_2PCH_2CH_2AsPh_2$ pae (VII)	H Ph ₂ P <i>t</i> -vasp (VI)

EXPERIMENTAL

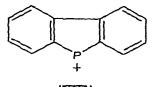
The preparation of the ligands were carried out by standard methods⁷ or will be reported in a future publication⁸. The mass spectra were recorded on an A.E.I. MS902 spectrometer with a source temperature of 100–110° at 70 eV using direct insertion technique.

DISCUSSION

It was found that the *cis* and *trans* isomers of the vinyl ligands had identical mass spectra; the mass spectrum of vpp (I) and t-vpp (II) is included in Table 1. The fact that both isomers fragment in exactly the same manner suggests that in the parent ion, $[H_2C_2P_2Ph_4]^+$, free rotation about the C-C bond is possible. From both


TABLE 1

MASS SPECTRA OF THE LIGANDS


cis- and trans-vpp (I,II)			pae (VII)		cis- and trans-vaa (III,IV)		cis- and trans-vasp (V,VI)				
m/e	I(%)	Fragment	m/e	I(%)	Fragment	m/e.	I(%)	Fragment	m/e	I(%)	Fragment
396	100	C26H22P2	442	100	C ₂₆ H ₂₄ PAs	484	100	C26H22As2	440	100	C ₂₆ H ₂₂ PAs
370	10	$C_{24}H_{20}P_2$	414	17	C24H20PAs	458	11	$C_{24}H_{20}As_2$	414	13	C24H20PAs
319	11	$C_{20}H_{17}P_2$	365	7	C20H19PAs	407	9	$C_{20}H_{15}As_{2}$	365	15	C20H19PAs
287	16	$C_{20}H_{16}P$	337	7	C ₁₈ H ₁₅ PAs	381	10	$C_{18}H_{15}As_2$	337	6	C18H15PAs
262	22	$C_{18}H_{15}P$	289	68	C20H18P	306	15	$C_{18}H_{15}As$	287	34	C20H16P
185	27	$C_{12}H_{10}P$	275	15	$C_{19}H_{16}P$	229	70	$C_{12}H_{10}As$	262	90	C ₁₈ H ₁₅ P
184	13	C ₁₂ H ₉ P	262	90	$C_{18}H_{15}P$	227	86	$C_{12}H_{B}As$	229	18	$C_{12}H_{10}As$
183	59	C ₁₂ H ₈ P	229	21	$C_{12}H_{10}As$	180	14	C ₈ H ₉ As	227	23	$C_{12}H_8As$
154	5	$C_{12}H_{10}$	227	40	$C_{12}H_8As$	178	44	C_8H_7As	185	47	$C_{12}H_{10}P$
152	11	$C_{12}H_8$	185	56	$C_{12}H_{10}P$	154	33	C12H10	183	67	$C_{12}H_{8}P$
108	29	C ₆ H ₅ P	183	80	$C_{12}H_8P$	152	20	$C_{12}H_{8};$	154	18	$C_{12}H_{10}$
107	21	C ₆ H₄P	154	19	$C_{12}H_{10}$			C ₆ H ₅ As	152	27	$C_{12}H_8;$
77	13	C ₆ H ₅	153	17	C12H11	150	71	C ₆ H ₃ As			C ₆ H ₅ As
			152	39	$C_{12}H_8$				131	13	C ₈ H ₆ P
			108	20	C ₆ H₅P				108	17	C ₆ H ₅ P

.

vpp and t-vpp the ion Ph_3P^+ (m/e 262) was obtained, and this metastable ion results directly from the parent ion by loss of C_7H_7P and its origin is thus owed to a rearrangement of the parent ion involving a 1,4-five-centre phenyl migration⁴

The resultant fate of the Ph_3P^+ ion is illustrated in Fig. 1. In the mass spectrum of pae (VII) (see Table 1), as well as in that of vpp, the base peak is the cyclic species, (VIII), m/e 183. It can be seen from Fig. 1 that this cyclic ion is generated via several different pathways.

(2111)

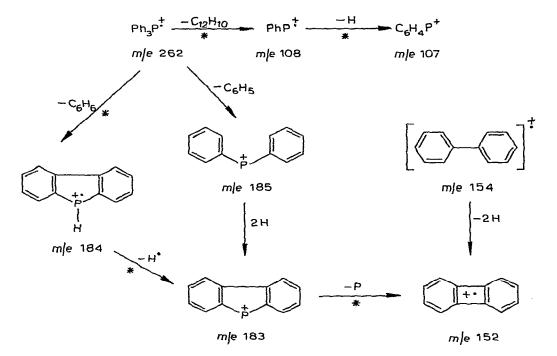


Fig. 1. Fragmentation of Ph_3P^+ to simpler molecules.

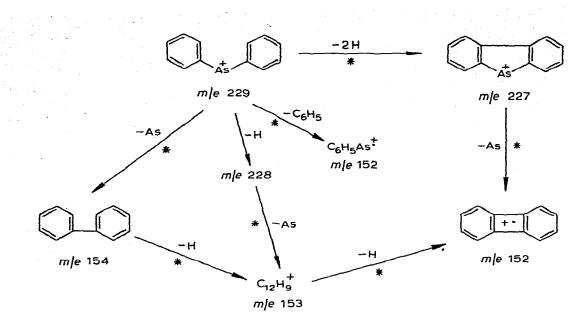
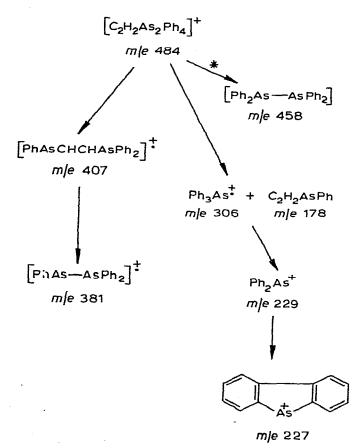
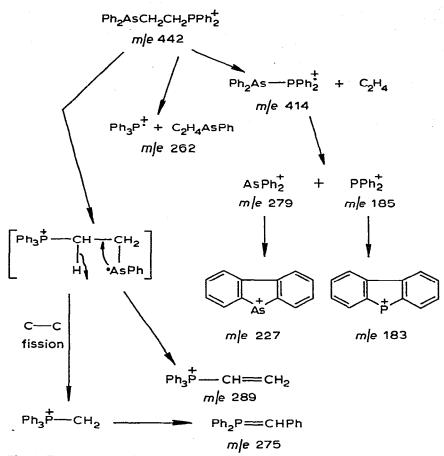
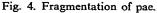
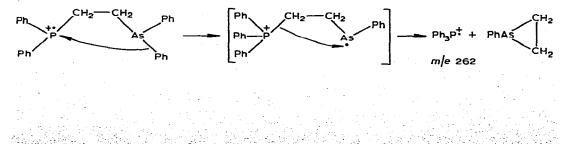


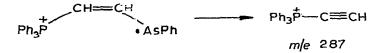
Fig. 2. Fragmentation of Ph_2As^+ to simpler organic molecules.


Fig. 3. Fragmentation of the diarsine ligand.

The mass spectrum of the isomeric diarsines is contained in Table 1, and the fragmentation generally resembles that of the analogous diphosphine pattern, the greater part of the current being carried by the species m/e 229 and 227 (Figs. 2 and 3).

The most interesting spectra derive from the unsymmetrical phosphine-arsine ligands vasp (V, VI) and pae (VII). The mass spectral pattern of the vasp isomers is included in the Table as well as that of the saturated analogue, pae. The mass spectra of *t*-vasp and pae have been briefly reported by King and Kapoor⁵, and these workers pointed out that cleavage of the carbon-phosphorus and/or carbon-arsenic predominated in the early stages of the fragmentation process. Phenyl migration occurs, as it did in the cases of vpp and vaa, but it is interesting to notice that there is no peak present assignable to Ph₃As⁺ (m/e 306), thus indicating that in the phosphine-arsine ligands the phenyl group is transferred from arsenic to phosphorus, but not vice-versa:



The bond dissociation energies for C-P and C-As suggest that the C-As bond cleavage would be most likely⁹.

The fragmentation of pae is shown in Fig. 4. One striking difference between the spectra of pae and vasp is that in the saturated pae a strong peak at m/e 289 results from the loss of C_6H_6As from the parent ion as follows:

The associated process in the case of vasp yields only an ion of much less intensity:

The spectra of all the mixed phosphine-arsenic ligands contain peaks with m/e 337, which can be attributed to Ph₃As⁺ and ions of the type Ph₂E⁺, C₁₂H₈E⁺, and PhE⁺ (E=P, As).

ACKNOWLEDGEMENT

KKC is grateful to The British Council for a Fees' Award.

REFERENCES

1 K. K. Chow, M. T. Halfpenny and C. A. McAuliffe, J. Chem. Soc. Dalton, 147 (1973).

2 D. H. Williams, R. S. Wood and R. G. Cooks, J. Amer. Chem. Soc., 90 (1968) 966.

3 D. E. Bublitz and A. W. Baker, J. Organometal. Chem., 9 (1967) 383.

4 R. Colton and Q. N. Porter, Aust. J. Chem., 21 (1968) 2215.

5 R. B. King and P. N. Kapoor, J. Amer. Chem. Soc., 91 (1969) 5191; 93 (1971) 4158.

6 R. D. Feltham and H. G. Metzger, J. Organometal. Chem., 33 (1971) 347.

7 A. M. Aguiar and D. J. Daigle, J. Amer. Chem. Soc., 86 (1964) 2299.

8 K. K. Chow and C. A. McAuliffe, in preparation.

9 T. L. Cottrell, The Strengths of Chemical Bonds, 2nd Edn., Butterworths, London, 1958, pp. 273-283.

ų